Causes and implications of compositionality on microbiome interpretation

Greg Gloor Biochemistry, U. Western Ontario

MEDICINE & DENTISTRY

Western

https://github.com/ggloor/compositions/presentations ggloor@uwo.ca@gbgloor

Motivation

- Compositional nature of data recognized from start
 - but unknown how to deal with compositional problems
- Ecology/Microbiology
 - proportion/relative abundance
 - rarefaction
- SAGE/Transcriptome
 - count normalizations
 - RPKM (Mortazavi: 2008)
 - TPM
 - scaling normalizations
 - TMM (edgeR Robinson: 2010)
 - RLE (DESeq, DESeq2 Anders: 2010)
- ratio data
 - qPCR (Vandesompele 2002)
 - compositional approaches

Objectives

- Demonstrate the use of multiple compositional approaches to examine microbiome datasets
- Show how to interpret the results
 - Exploratory PCA plots
 - effect sizes (features associated with the cohorts)
 - balances (best model to explain the cohorts)

Basic interpretation

- cannot ask "what has changed" (increased, decreased)
- can ask "what has
 changed relative to
 something" (what
 relationship has
 changed
 - single feature relative to a basket
 - clr, *lr
 - single (or basket)
 relative to single (or basket)
 - balances, ilr

Basic interpretation - CLR

- cannot ask "what has changed" (increased, decreased)
- can ask "what has
 changed relative to
 something" (what
 relationship has
 changed
 - single feature relative to a basket
 - clr, *lr
 - single (or basket)
 relative to single (or basket)
 - balances, ilr

Crohn's dataset (Gevers CHM 2014)

- Treatment naive CD (n=662) and controls (n=313). Analyzed at genus level (Rivera-Pinto mSystems 2018)
- Crohn's samples more variable and centre shifted
- Compositional PCA explains about 2X variance than does UniFrac in this dataset
- which taxa or group associate with each cohort?

Crohn's dataset (Gevers CHM 2014)

- Treatment naive CD (n=662) and controls (n=313). Analyzed at genus level (Rivera-Pinto mSystems 2018)
- Crohn's samples more variable and centre shifted
- Compositional PCA explains about 2X variance than does UniFrac in this dataset
- which taxa or group associate with each cohort?

ALDEx2: what is different?

Fernandes PLoS ONE 2013

Uses CLR transform

- what has changed relative to everything else
- change is robust to sampling noise

Only one genus with relatively large effect

- Roseburia is a relatively abundant butyrate producer
- Generally associated with a healthy gut microbiota

Effect plot

Gloor JCGS 2016

ALDEx2: what is different

Uses CLR transform

- what has changed relative to everything else
- change is robust to sampling noise

Only one genus with relatively large effect

- Roseburia is a relatively abundant butyrate producer
- Generally associated with a healthy gut microbiota

Basic interpretation: balances

- cannot ask "what has changed" (increased, decreased)
- can ask "what has
 changed relative to
 something" (what
 relationship has
 changed
 - single feature relative to a basket
 - clr, *lr
 - single or basket, relative to single or basket
 - balances, ilr

balance value

balance: pair(s) of features that are most explanatory (Erb & Quinn)

Uses balance transform (Quinn F1000 2018)

 what ratio between two (or three) taxa is different in the two groups

Only one pair of genera with a ratio of relatively large effect

- Roseburia is a relatively abundant butyrate producer
- Streptococcus is often associated with dysbiosis

balance: pair of features that are most explanatory

Balance result congruent with univariate CLR analysis

Roseburia and Streptococcus have the largest relative effects in the normal and CD cohorts

selbal: "basket of ratios" features that are most explanatory

Rivera-Pinto mSystems 2018

selbal

Intermediate summary

- analysis must be re-cast as "what has changed relative to a standard"
- multiple ways of choosing standard
 - one vs. many clr, *lr, qPCR
 - one vs. one, many vs. many balances, ilr
- full suite of tools available
 - multivariate, univariate, bivariate approaches
- results are internally consistent within and between approaches

Meta-transcriptome of an ecosystem

- characterize mRNA of all species at once
- Information about what is being made now
- Unbalanced
 - Different conditions can have different taxonomic compositions
 - Both absolute and relative abundance of the taxa and their transcripts can change

Bacterial vaginosis

- Most common vaginal dysbiosis
 - H is predominantly Lactobacillus sp.
 - BV is mixed bag of anaerobes with L. iners
- Marked asymmetry in composition
 - Group genes to functional level (SEED, KEGG)
 - Sparse
- If everything is different, then nothing is important
 - We must assume something is invariant

Big Picture

16S vs. mRNA contribution

Reference sequence

Aggregated by function

Four groups of functions

Core = housekeeping
BV = biosynthesis/TCA
H = aa/sugar
BV1 = ...

Reference sequence - BV

What is different between BV1 and BV2?

Distinguishing functions

Summary

Analysis	Standard (count)	CoDa/probability
Beta Diversity	Driven by most abundant taxon or gene	Variance of ratios between taxa or genes
Clustering	Driven by most abundant taxon or gene	Variance of ratios between taxa or genes
Differential abundance	Usually rarest taxon or gene is most variable within and between groups	Variance of ratios between taxa or genes - most variable between groups
Correlation	Just wrong - many false positives	Pairs of taxa or genes that have common
Interpretation	Seems simple but is not	Seems hard but is not

Summary

HTS is compositional

- Sequencing data should tell us about the environment, not just the post-sequencing data
- Only compositionally-appropriate methods tell us about the environment

Acknowledgments

Canadian Centre for Human Microbiome and Probiotic Research

Gregor Reid Jeremy Burton Amy McMillan Daniel Giguere

Jia Rong Wu NSERC CRSNG

Andrew Fernandes

Jean Macklaim

Coming soon: Rob Finn et al. Mgnify@EBI

People. Discovery. Innovation.

I MEAN, THERE'S LIKE ONE OR TWO PINTS OF THEM IN HERE; THEIR CELLS OUTNUMBER MINE!

ANYWAY, THIS WAS A REAL TEAM EFFORT.

Vera Pawlowsky-Glahn Juan Jose Egozcue

CoDa

Justin Silverman philr Tom Quinn, Ionas Erb propr, balances

