Roles of our gut microbes in metabolic disorders and fatty liver

Tony (Hao) Wu

2019-06-20

Acknowledgement

One World, One Aim

BACKGROUND (1)

Hepatic lipid accumulation:

- Non-esterified fatty acids (60%)
- Dietary fat (15%)
- Dietary carbs: 5% in healthy but 25% in subjects with NAFLD, one potential reason is that insulin resistance common to NAFLD re-routes glycogen synthesis to DNL
- Without interventions: NAFLD to NASH, cirrhosis, liver failure, and hepatocellular carcinoma

BACKGROUND (2)

Pathogenesis of NAFLD:

- From two hits (1998) to multiple hits: but best characterized by 'the blind men and the elephant' story
- Recently the microbiota also joined this ally and interestingly, microbial shifts have been linked with all these contributing factors.
- How do we get a systematic perspective or a global picture?

Carbs reduction improves liver lipid metabolism & reduces inflammation

Also improved insulin sensitivity

	Discovery cohort						Validation cohort		
	D0	D1	D3	D7	D14	P value	D0	D7	P value
Age (year)	53.7±3.65	NA	NA	NA	NA	NA	48.4±5.6	NA	NA
Gender (male/female)	8/2	NA	NA	NA	NA	NA	5/2	NA	NA
BMI (kg/m²)	34.1±1.2	33.9±1.2	33.7±1.2	33.6±1.2	33.5±1.2	2.03E-10	32.0±1.4	31.7±1.5	0.0007
Weight (kg)	107.2±6.0	106.5±5.9	106.0±5.9	105.6±5.8	105.2±5.8	4.39E-10	98.4±6.6	97.5±6.8	0.1077
Waist (cm)	116.2±5.3	116.0±5.2	115.2±5.0	115.4±5.0	115.2±5.0	0.2114			
Liver fat (%)	16.0±2.3	15.3±2.3	13.8±2.4	12.0±2.4	9.7±1.9	7.41E-15			
Glucose (mmol/L)	6.2±0.2	6.0±0.2	5.9±0.2	6.0±0.2	6.0±0.2	0.3816	6.0±0.1	5.9±0.1	0.0579
P-Insulin (mIE/L)	21.7±5.0	21.8±4.7	16.9±3.0	17.8±4.4	18.8±4.2	0.0183	21.6±3.2	17.2±2.6	0.0313
HOMR-IR	6.0±1.4	5.7±1.2	4.4±0.8	4.8±1.2	5.0±1.1	0.0305	5.8±0.9	4.5±0.7	0.0313
S-Folate (nmol/L)	25.6±4.1	30.0±4.4	31.2±4.4	31.7±4.4	34.5±5.5	6.15E-11	17.6±6.5	22.7±7.1	0.0156
S-ALP (U/L)	55.8±6.0	56.9±6.9	53.7±6.2	48.4±5.4	47.6±5.2	1.83E-07	79.1±6.6	63.5±5.9	0.0223
S-ALT (U/L)	39.7±5.0	39.0±4.8	42.4±5.9	44.1±6.8	37.0±5.0	0.0574	63.8±7.7	61.9±10.2	0.4688
S-AST (U/L)	30.8±2.4	30.8±2.4	35.5±2.6	36.3±2.8	29.7±2.2	0.00015	34.2±2.9	32.7±2.1	0.2969
S-FFA (μmol/L)	524.5±52.1	504.5±42.4	466.4±66.3	431.0±48.1	480.7±63.2	0.4405			
S-Cholesterol (mmol/L)	5.3±0.3	5.5±0.5	5.4±0.4	4.8±0.5	4.4±0.4	2.85E-07	4.6±0.2	4.3±0.2	0.0340
S-Triglycerides (mmol/L)	2.8±0.4	3.7±1.3	1.9±0.4	1.4±0.4	1.4±0.3	0.0113	1.2±0.1	0.7±0.1	0.0156
S-Phospholipids (mmol/L)	228.8±13.5	222.7±22.7	205.3±14.1	182.8±10.1	174.2±9.4	2.65E-06			

Carbs reduction also rapidly alters gut microbial composition

Microbial shifts towards folate production

- Positive correlations between serum folate and beta-hydroxybutyrate thus mitochondrial beta oxidation; also linked with increased or small or state and service of the servic
- \circ Decrease of Diacylglycerol level was also consistent with improved insulin 1.0

Ο

Component 1

Liver transcriptome changes reflect improved hepatic lipid metabolism

Supporting evidence

In support of our clinical results, many animal studies have demonstrated that folate supplementation can prevent liver fat accumulation, potentially through PPAR- α and AMPK (Kelley et al., 1950; Akesson et al., 1982; Sid et al., 2017; Sid et al., 2015)

Take home message

- ✓ By taking advantage of integration of multi-Omics datasets, we provided the first clinical evidence showing that specific low carbs diet can shift gut microbes toward folate production.
- ✓ The resulted folate can be further absorbed and utilized by our body to improve lipid metabolism potentially through folate-mediated one carbon metabolism.
- ✓ The low-carbs diet is really beneficial to lipid and glucose metabolism in short term at least.

Hao Wu et al. 2015 Trends in Endocrinology & Metabolism

Welcome to Sweden!

7

