CoDa	MB-data	problem	alternative	remarks	references

Why are microbiome data compositional?

Vera Pawlowsky-Glahn

Emeritus Prof., Dep. Computer Science, Applied Mathematics & Statistics, University of Girona, Spain *Past-President of the Association for Compositional Data*

joint work with Juan José Egozcue

Emeritus Prof., Dep. Civil & Environmental Engineering, Technical University of Catalonia, Barcelona, Spain *President of the Association for Compositional Data*

> The Barcelona Debates on the Human Microbiome Barcelona, Spain, 20-21 June 2019

CoDa ●	MB-data	problem 00000	alternative 000000	remarks ○	references

What are compositional data (CoDa)?

- historically: sum constraint data, like proportions or percentages
- after 1980: strictly positive data that carry relative information
- after 2001: parts of some whole that carry relative information, equivalence classes of strictly positive, proportional vectors

representative:
$$\mathcal{S}^{D} = \left\{ \mathbf{x} = [x_1, \dots, x_D] \in \mathbb{R}^{D} \mid x_i > 0, \sum_{i=1}^{D} x_i = \kappa \right\}$$

- $\mathcal{S}^{D} \subset \mathbb{R}^{D}_{+} \subset \mathbb{R}^{D}$; $\kappa = \text{constant, frequently 1 or 100}$
- CoDa need not to be closed
- scale invariant properties hold for any subcomposition*
- analyses can be based on any representative

* subcomposition: equivalence class of a subset of parts

CoDa	MB-data	problem	alternative	remarks	references
	000				

Microbiome data: usually tables of counts or proportions

part of a table of oral microbiome data*

S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	
13	7	25	10	10	10	70	1575	221	73	
0	0	0	0	0	0	0	0	0	0	
12	6	0	70	10	54	95	79	39	12	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
74	26	19	258	34	465	328	61	29	35	
45	46	94	601	480	431	918	174	883	279	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
:	:	:	:	:	:	:	:	:	:	:
	S1 13 0 12 0 0 74 45 0 0	S1 S2 13 7 0 0 12 6 0 0 74 26 45 46 0 0 0 0	S1 S2 S3 13 7 25 0 0 0 12 6 0 0 0 0 74 26 19 45 46 94 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

* Human Microbiome Project Consortium (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486.

table of (relative) abundances of features (OTUs, bacteria, phyla, genera, ...)

how many times a sequence aligns to a reference annotation, classification of genomic sequences
large proportion of zeros, positive numbers representing portions of a whole

CoDa	MB-data	problem	alternative	remarks	references
	000				

Information in barplots of Granulicatella and Haemophilus

Do both representations carry the same information?

- NOT in absolute scale, YES in relative scale
- counts can not be estimated from proportions
- but proportions can be estimated from counts

CoDa	MB-data	problem	alternative	remarks	references
	000				

Important characteristics of microbiome data

microbiome data are compositional!!!

- the total number of sequenced reads depends on the capacity of the instrument and is not informative
- absolute and relative abundances carry the same relative information
- information in microbiome data is relative
- data are strictly positive or zero, never negative
- zeros may be due to undersampling, high heterogeneity, or real absence

note

absolute abundances are not recoverable from sequence data alone

• each count is not compositional itself, but the share out of counts is

CoDa	MB-data	problem	alternative	remarks	references
		0000			

Why is the compositional nature of data a problem?

typical problems

- discrimination and clustering are affected by sequencing depth
- correlation between two taxa depends on the subcomposition considered: it is spurious (Pearson, 1897); some are necessarily negative (negative bias)
- many methods are subcompositionally incoherent

actual practice does not avoid the problems

- rarefaction and count normalization do not change the compositional nature of data, but might introduce noise
- some dissimilarities (UniFrac; Bray-Curtis; Jensen-Shannon divergence) used for clustering and discrimination are not subcompositionally coherent

CoDa ○	MB-data	problem ○●○○○	alternative	remarks O	references
Problem	s with con	npositional c	lata		

changes in proportions do not reflect changes in absolute abundance

Egozcue and Pawlowsky-Glahn (2018)

Lovell et al. (2015)

CoDa	MB-data	problem	alternative	remarks	references
		00000			
					1

Which is the origin of these problems?

experiments produce results (data); **data** can be categorical, numerical, functional, sets, ...; results are observed and recorded in a **sample space**;

examples: real space, positive orthant of real space, simplex, hypersphere, ...

desirable (ideal) properties of the sample space

- includes only possible results and has a structure
- a scale is defined (how are differences measured?)
- operations are defined (sum, product, shift, ...)
- a metric is available (angle, orthogonality, distance, ...)

an inappropriate sample space can produce spurious results!!!

CoDa o	MB-data	problem ○○○●○	alternative 000000	remarks O	references
Problem	is with con	npositional c	lata		

most methods assume the sample space to be $S^D \subset \mathbb{R}^D$ with the usual Euclidean geometry; this can lead to nonsensical results

examples with closed (constant sum) CoDa:

- standard Euclidean distances are not dominant
- O correlations are spurious
- the standard covariance matrix is singular
- (a) covariance matrices are spurious \Rightarrow all methods based on covariance or correlation are flawed
- Bray-Curtis dissimilarity and Unifrac (weighted and unweighted) distances are not subcompositionally coherent

CoDa	MB-data	problem	alternative	remarks	references
		00000			

spurious correlation (simulated data)

CoDa	MB-data	problem	alternative	remarks	references
			000000		
Dringin	les underly	ing CoDa an	alveie		
ГШСР	ies underly	ing Coba an	arysis		

1. scale invariance

- scaling factors do not alter the analysis
- avoids the need for rarefaction
- ratios of components are relevant!

2. subcompositional coherence (compatibility)

- subcompositional scale invariance
- subcompositional dominance (*d_a*(*x*₁, *x*₂) ≥ *d_a*(*s*₁, *s*₂), distances will never decrease if additional taxa are observed)
- ratios of common parts are preserved

CoDa	MB-data	problem	alternative	remarks	references
○	000	00000	○●○○○○	○	
Aitchison	aeometrv				

 $\mathcal{S}^{D}(\oplus,\odot,\langle,\rangle_{a})$ is a (D-1)-dimensional Euclidean space

For $\mathbf{x}, \mathbf{y} \in \mathcal{S}^{D}$, $\alpha \in \mathbb{R}$, C the closure operation

- perturbation: $\mathbf{x} \oplus \mathbf{y} = \mathcal{C}[x_1y_1, \dots, x_Dy_D]$
- powering: $\alpha \odot \mathbf{x} = \mathcal{C}[\mathbf{x}_1^{\alpha}, \dots, \mathbf{x}_D^{\alpha}]$
- inner product: $\langle \mathbf{x}, \mathbf{y} \rangle_{\mathbf{a}} = \frac{1}{D} \sum_{i < j} \ln \frac{x_i}{x_j} \ln \frac{y_i}{y_j}$

• norm, distance: $\|\mathbf{x}\|_a^2 = \frac{1}{D} \sum_{i < j} \left(\ln \frac{x_i}{x_j} \right)^2$, $d_a^2(\mathbf{x}, \mathbf{y}) = \frac{1}{D} \sum_{i < j} \left(\ln \frac{x_i}{x_j} - \ln \frac{y_i}{y_j} \right)^2$

Aitchison (1982, 1986), operations and distance; Pawlowsky-Glahn and Egozcue (2001), Aitchison geometry

CoDa	MB-data	problem	alternative	remarks	references
○	०००	00000	○○●○○○	o	

Advantages of the Aitchison geometry

- olr-coordinates (orthonormal, isometric log-ratio coordinates, previously known as ilr) are available, e.g. balances
- operations and metrics in S^D are equivalent to ordinary operations and metrics in coordinates (principle of working in coordinates)
- Aitchison measure in S^D = Lebesgue measure in olr-coordinates in \mathbb{R}^{D-1}

standard statistical tools can be used on olr-coordinates

CoDa	MB-data	problem	alternative	remarks	references
			000000		

Special features of the Aitchison geometry

- correlation between parts is not valid
 alternatives are based on properties
 - \Rightarrow alternatives are based on proportionality
- questions need reformulation
 - \Rightarrow always two or more parts are involved
- questions and statements on single parts are nonsensical

CoDa	MB-data	problem	alternative	remarks	references
			000000		

The Aitchison geometry: ellipses and lines

what you see in proportions ... and in olr-coordinates

$$olr_{1}(\mathbf{x}) = \sqrt{\frac{2}{3}} \log \frac{x_{1}}{(x_{2}x_{3})^{\frac{1}{2}}}$$
$$olr_{2}(\mathbf{x}) = \sqrt{\frac{1}{2}} \log \frac{x_{2}}{x_{3}}$$

CoDa	MB-data	problem	alternative	remarks	references
			000000		

CoDa-dendrogram: partition, means, variances, olr-coordinates

2-Fusobacterium

3-Gemella

4-Granulicatella

5-Haemophilus

6-Leptotrichia

7-Neisseria

8-Porphyromonas

9-Prevotella

10-Streptococcus

11-Veillonella

keratinized gingiva buccal mucosa supragingival plaque

olr-coordinates (balances):

$$y_i = \sqrt{\frac{\mathbf{r}_i \cdot \mathbf{s}_i}{\mathbf{r}_i + \mathbf{s}_i}} \ln \frac{(\prod_{j \in \mathbf{R}_j} x_j)^{1/\mathbf{r}_i}}{(\prod_{\ell \in \mathbf{S}_i} x_\ell)^{1/\mathbf{s}_i}}$$

visual ANOVA for each balance

application of balances in microbiome studies: SELBAL (selection of a balance to predict a condition or disease)

CoDa ○	MB-data	problem 00000	alternative 000000	remarks ●	references
Conclu	ding remarl	(S			

microbiome data are compositional!!!

- interest is (or should be) in the relative information carried by proportions
- the simplex corresponds to the set of possible observations
- an interpretable measure of difference and scale of variables is available
- a suitable, well known algebraic-geometric structure allows building coherent models
- for CoDa, it is better to think in terms of ratios

CoDa	MB-data	problem	alternative	remarks	references
○	000	00000	000000	○	●○
some re	eferences (I)			

Aitchison J (1982): The statistical analysis of compositional data (with discussion). Journal of the Royal Statistical Society, B, 44(2), 139–177.

Aitchison J (1983): Principal component analysis of compositional data. Biometrika, 70(1), 57-65.

Aitchison J (1986): The Statistical Analysis of Compositional Data. Monographs on Statistics and Applied Probability. Chapman, London (UK).

Aitchison J; Shen SM (1980): Logistic-normal distributions. Some properties and uses. Biometrika, 67(2), 261–272.

Barceló-Vidal C; Martín-Fernández JA (2016): The Mathematics of Compositional Analysis. Austrian Journal of Statistics 45: 57-71.

Egozcue JJ; Pawlowsky-Glahn V (2005): Groups of parts and their balances in compositional data analysis. Math. Geol., 37(7), 795–828.

Egozcue JJ; Pawlowsky-Glahn V (2006): Simplicial geometry for compositional data. In: Buccianti et al (Eds) Compositional Data Analysis in the Geosciences: From Theory to Practice. Geological Soc., London (UK), SP 264.

Egozcue JJ; Pawlowsky-Glahn V (2018): Modelling Compositional Data. The Sample Space Approach. In: Daya Sagar B et al (Eds) Handbook of Mathematical Geosciences. Springer, Cham.

Egozcue JJ; Pawlowsky-Glahn V (2019): Compositional data: the sample space and its structure. TEST (in press).

CoDa	MB-data	problem	alternative	remarks	references
○		00000	000000	o	○●
some r	eferences (I	I)			

Egozcue JJ et al (2018): Linear Association in Compositional Data Analysis. Austrian Journal of Statistics, 47(1).

Egozcue JJ et al (2003): Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3).

Gloor GB et al (2017): Microbiome datasets are compositional: and this is not optional. Frontiers Microbiology, Mini Review article.

Lovell D et al (2015): Proportionality: A Valid Alternative to Correlation for Relative Data, PLoS Computational Biology, 11(3).

Martín-Fernández JA et al (2011): Dealing with zeros. In: Pawlowsky-Glahn and Buccianti (Eds) Compositional Data Analysis: Theory and Applications. Wiley (UK).

Pawlowsky-Glahn V; Egozcue JJ (2001): Geometric approach to statistical analysis on the simplex. SERRA, 15(5).

Pawlowsky-Glahn V et al (2015): Modeling and Analysis of Compositional Data, Wiley, Chichester (UK).

Rivera-Pinto J et al (2018): Balances: a new perspective for microbiome analysis. mSystems 3:e00053-18.

